
1

Fast File, Log and Journaling File
Systems"

cs262a, Lecture 3

Ion Stoica

(based on presentations from John Kubiatowicz, UC Berkeley,
and Arvind Krishnamurthy, from University of Washington)

Today’s Papers

A Fast File System for UNIX"
Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry.
Appears in ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 3,
August 1984, pp 181-197

Analysis and Evolution of Journaling File Systems"
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau,
Proceedings of the Annual Conference on USENIX Annual Technical Conference

(ATEC '05), 2005

System design paper and system analysis
paper

Why Today’s Papers?

After all SSDs are taking over…

Several reasons:

» HDDs still use to store very large data sets cost

effectively

» Great examples of system"

engineering

» Valuable lessons for other"

application domains

Review: Magnetic Disks

Review: Magnetic Disks

Cylinders: all the tracks under the "
head at a given point on all surface

Read/write data is a three-stage process:

» Seek time: position the head/arm over the proper track

» Rotational latency: wait for desired sector to rotate under r/w head

» Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Seek time = 4-8m

One rotation = 1-2ms "
(3600-7200 RPM)

Review: Magnetic Disks

Cylinders: all the tracks under the "
head at a given point on all surface

Read/write data is a three-stage process:

» Seek time: position the head/arm over the proper track

» Rotational latency: wait for desired sector to rotate under r/w head

» Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software

Queue

(Device Driver)

Hardw
are

Controller

 Media Time

(Seek+Rot+Xfer)

Request

Result

Disk Latency = Queueing Time + Controller time +
 Seek Time + Rotation Time + Xfer Time

Review: Magnetic Disks

Cylinders: all the tracks under the "
head at a given point on all surface

Read/write data is a three-stage process:

» Seek time: position the head/arm over the proper track

» Rotational latency: wait for desired sector to rotate under r/w head

» Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Disk Latency = Queueing Time + Controller time +
 Seek Time + Rotation Time + Xfer Time

Highest Bandwidth: Transfer large group of blocks
sequentially from one track

Historical Perspective

1956 IBM Ramac — early 1970s Winchester

»  Developed for mainframe computers, proprietary interface

»  Steady shrink in form factor from 24in to 17in

1970s developments

»  5.25 inch floppy disk form factor (microcode into mainframe)

»  Emergence of industry standard disk interfaces

1980s: PCs, first generation workstations, and client server computing

»  Centralized storage on file server

•  Accelerate disk downsizing: 8inch inch to 5.25 inch

»  Mass market disk drives become a reality

•  Industry standards: SCSI, IDI; end of proprietary standards

•  5.25 inch to 3.5 inch drives PCs

1990s: Laptops à 2.5inch

2000s: Switch to perpendicular (vs longitudinal) recording

»  2007: 1TB

»  2009: 2TB

»  2016: 10TB

Recent: Seagate Enterprise

10 TB (Jan, 2016)

7 platters, 14 heads

7200 RPMs

6 Gbps SATA /12Gbps SAS interface

220MB/s transfer rate, cache size: 256MB

Helium filled: reduce friction and power usage

HDD vs SSD Comparison

SSD prices drop much faster than HDD

Largest SSDs

60TB (Seagate, August 16)

Dual 16Gbps

Seq reads: 1.5GB/s

Seq writes: 1GB/s

Random Read Ops (IOPS): 150K

File Systems Background

i-node: per-file metadata "
(unique per file)

»  contains: ownership, permissions, "

timestamps, ~10 data-block pointers

»  i-nodes form an array, indexed by "

“i-number” – so each i-node has a "
unique i-number

»  Array is explicit for FFS, implicit for "
LFS (its i-node map is cache of"
 i-nodes indexed by i-number)

Indirect blocks:

»  i-node only holds a small number of data block pointers (direct pointers)

»  For larger files, i-node points to an indirect block containing "

1024 4-byte entries in a 4K block

»  Each indirect block entry points to a data block

»  Can have multiple levels of indirect blocks for even larger files

Original Unix File System

Simple and elegant, but slow

» 20KB/s, only 2% from disk theoretical bandwidth (1MB/s)

Challenges:

» Blocks too small: 512 bytes (matched sector size)

» Many seeks

•  Consecutive blocks of files not close together

•  All i-nodes at the beginning of the disk, all data after that

•  i-nodes of directory not close together

» No read-ahead: transfer only one block at a time

Old File System

Increase block size to 1024: over 2x higher
throughput (why?)

» 2x higher transfer rate

» Fewer indirect blocks, so fewer seeks

Challenges: in time free list becomes random so
performance degrades (because of seeks)

FFS Changes

4096 or 8192 byte block size (why not larger?)

Use cylinder groups (why?)

» Each contains superblock, i-nodes, bitmap of free

blocks, usage summary info

Blocks divided into small fragments (why?)

Don’t fill entire disk (why?)

Parametrized Model

New file try to allocate new blocks on same
cylinder (why?)

Don’t allocate consecutive blocks (why?)

» How do you compute the space between two

blocks that are consecutive in the file?

Layout

Principles:

»  Locality of reference to minimize seek latency

»  Improve the layout of data to optimize larger transfers

inodes of files in same directory together (why?)

New directories in cylinder groups that have higher than average free
blocks (why?)

Try to store all data blocks of a file in the same cylinder group

»  Preferably at rotationally optimal positions in the same cylinder

Move to other cylinder group when files grow (which one?) "
Greedy algorithm:

»  same cylinder

»  same cylinder group

»  quadratically hash cylinder group number

»  exhaustive search;

FFS Results

20-40% of disk bandwidth for large reads/writes

10-20x original UNIX speeds

Size: 3800 lines of code vs. 2700 in old system

10% of total disk space overhead

New system >200KB/s vs. 30KB/s old system

» Free list contains sequential blocks in new system vs.

randomly ordered blocks in old

FFS System Interface Enhancements

Long file names: from 14 to 255 characters

Advisory file locks (shared exclusive):

» Requested by the program: shared or exclusive

»  Effective only if all programms accessing the same file use them

»  Process id of holder stored with lock => can reclaim the lock if process

is no longer around

Long file names: from 14 to 255 characters

Symbolic links (contrast to hard links)

Atomic rename capability

»  The only atomic read-modify-write operation, before this there was none

Disk quotas

FFS Summary

3 key features:

» Optimize FS implementation for hardware

» Measurement-driven design decisions

» Locality “wins”

Limitations:

» Measurements derived from a single installation

» Ignored technology trends

Lessons:

» Don’t ignore underlying hardware characteristics

» Contrasting research approaches: improve what you’ve got

vs. design something new (e.g., Log File Systems)

Log-Structured/Journaling File System

Radically different file system design

Technology motivations:

» CPUs outpacing disks: I/O becoming more-and-more a bottleneck

» Large RAM: file caches work well, making most disk traffic writes

Problems with (then) existing file systems:

» Lots of little writes

» Synchronous: wait for disk in too many places

» 5 seeks to create a new file: (rough order)

1.  file i-node (create)

2.  file data

3.  directory entry

4.  file i-node (finalize)

5.  directory i-node (modification time)

LFS Basic Idea

Log all data and metadata with large, sequential
writes

Keep an index on log’s contents

Use large memory to provide fast access through
caching

Data layout on disk has “temporal locality” (good for
writing), rather than “logical locality” (good for reading)

» Why is this a good idea?

Two Potential Problems

Log retrieval on cache misses

Wrap-around: what happens when running out
of space?

» No longer any big, empty runs available

» How to prevent fragmentation?

Log Retrieval

When you create a small file (less than a block):

» Write data block to memory log

» Write file inode to memory log

» Write directory block to memory log

» Write directory inode to memory log

When memory accumulates to say 1MB or 30s
have elapsed, write log to disk as a single write

No seek for writes, but inodes are now floating!

Solving floating inode problem

Need to keep track of current position of inodes

» Solution: use an “inode-map”!

inode-map could be large (as many entries as
there are files in the file system)

» Break inode-map into chunks and cache them

Write out on the log those chunks that have
changed

But, how do do you find the chunks of inode-
map?

Finding chunks of inode-map?

Solution inode-map-map: map of inode map

Have we solved the problem now?

Yes!

» inode-map-map is small enough to be always cached

in memory

» it is small enough to be written to a fixed (and small

position) on the disk (checkpoint region)

» write the inode-map-map when file system is

unmounted

LFS Disk Wrap-Around

Compact live info to open up large runs of free space

»  Problem: long-lived information gets copied over-and-over

Thread log through free spaces

»  Problem: disk fragments, causing I/O to become inefficient again

Solution: segmented log

» Divide disk into large, fixed-size segments

» Do compaction within a segment; thread between segments

» When writing, use only clean segments (i.e. no live data)

» Occasionally clean segments: read in several, write out live data in

compacted form, leaving some fragments free

» Collect long-lived info into segments that never need to be cleaned

» No free list or bit map (as in FFS), only a list of clean segments

Which segment to clean?

Keep estimate of free space in each segment to
help find segments with lowest utilization

Always start by looking for segment with
utilization=0…

If utilization of segments being cleaned is U:

» write cost = (bytes read & written)/(new bytes written) "

 = 2/(1 – U), if U > 0

» write cost increases with U: U = .9 => cost = 20!

» need a cost <= 4; à U <= .5

LFS Segment Cleaning

How to clean a segment?

» Segment summary block contains map of the segment

» Must list every i-node and file block

» For file blocks you need {i-number, block #}

Analysis and Evolution of
Journaling File Systems

Write-ahead logging: commit data by writing it to log,
synchronously and sequentially

Later move data to its normal (FFS-like) location

» called checkpointing; makes room in the (circular) journal

Better for random writes, slightly worse for big sequential
writes

All reads go the the fixed location blocks, not the journal

» Journal only read for crash recovery and checkpointing

Much better than FFS (fsck) for crash recovery (Why?)

Ext3/ReiserFS/Ext4 filesystems are the main ones in Linux

Three modes for a JFS

Writeback mode

Ordered mode

Data journaling mode

Writeback Mode

Journal only metadata

Write back data and metadata independently

Metadata may have dangling references after
a crash (if crash between metadata and data
writes)

Ordered Mode

Journal only metadata, but always write data
blocks before their referring metadata is
journaled

This mode generally makes the most sense
and is used by Windows NTFS and IBM’s JFS

Writer Journaling Mode

Write both data and metadata to the journal

Huge increase in journal traffic; plus have to
write most blocks twice, once to the journal
and once for checkpointing (why not all?)

JFS Crash Recovery

Load superblock to find tail/head of the log

Scan log to detect whole committed transactions

» There is a commit record

Replay log entries to bring in-memory data
structures up to date

» This is called “redo logging” and entries must be

“idempotent”

Playback is oldest to newest; tail of the log is the
place where checkpointing stopped

Semantic Block-level Analysis (SBA)

Nice idea: interpose special disk driver between the file system
and real disk driver

Pros:

»  captures ALL disk traffic

»  can use with a black-box file system (no source code needed and can

even use via VMWare for another OS)

» more insightful than just performance benchmark

Cons:

» Must understand disk layout

» Really only useful for writes

To use well, drive file system with smart applications that test
certain features of the file system (to make the inference easier)

Semantic Trace Playback (STP)

Uses two kinds of interposition:

» SBA driver that produces a trace, and

» user-level library between app and real file system

User-level library traces dirty blocks and app
calls to fsync

Playback:

» Given the two traces, STP generates a timed set of

commands to the raw disk device – this sequence can
be timed to understand performance implications

Semantic Trace Playback (STP)

Claim:

» Faster to modify the trace than to modify the file

system and simpler and less error-prone than building
a simulator

Limited to simple FS changes

Best example usage:

» Showing that dynamically switching between ordered

mode and data journaling mode actually gets the best
overall performance (use data journaling for random
writes)

LFS Summary

CPUs outpacing disk speeds; implies that I/O is becoming
more-and-more of a bottleneck

Write FS information to a log and treat the log as the truth;
rely on in-memory caching for speed

Hard problem: finding/creating long runs of disk space to
(sequentially) write log records to

»  Solution: clean live data from segments, picking segments to

clean based on a cost/benefit function

Limitations:

»  Assumes that files get written in their entirety; else would get intra-

file fragmentation in LFS

»  If small files “get bigger” then how would LFS compare to UNIX?

LFS Observations

Interesting point:

» LFS’ efficiency isn’t derived from knowing the

details of disk geometry; implies it can survive
changing disk technologies (such variable number
of sectors/track) better

Lessons:

» Rethink your basic assumptions about what’s

primary and what’s secondary in a design

» In this case, they made the log become the truth

instead of just a recovery aid

Exercise

How would you design differently file-system
for SSDs or 3DXPoint?

