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Fast File, Log and Journaling File 
Systems"

cs262a, Lecture 3


Ion Stoica

(based on presentations from John Kubiatowicz, UC Berkeley, 
and Arvind Krishnamurthy, from University of Washington)







Today’s Papers

A Fast File System for UNIX"
Marshall Kirk McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry. 
Appears in ACM Transactions on Computer Systems (TOCS), Vol. 2, No. 3, 
August 1984, pp 181-197


Analysis and Evolution of Journaling File Systems"
Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, 
Proceedings of the Annual Conference on USENIX Annual Technical  Conference 

(ATEC '05), 2005

System design paper and system analysis 
paper




Why Today’s Papers?

After all SSDs are taking over…

Several reasons:

» HDDs still use to store very large data sets cost 

effectively

» Great examples of system"

engineering

» Valuable lessons for other"

application domains 







Review: Magnetic Disks




Review: Magnetic Disks

Cylinders: all the tracks under the "
head at a given point on all surface


Read/write data is a three-stage process:

» Seek time: position the head/arm over the proper track

» Rotational latency: wait for desired sector to rotate under r/w head

» Transfer time: transfer a block of bits (sector) under r/w head
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Seek time = 4-8m

One rotation = 1-2ms "
(3600-7200 RPM)
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Highest Bandwidth: Transfer large group of blocks 
sequentially from one track




Historical Perspective

1956 IBM Ramac — early 1970s Winchester

»  Developed for mainframe computers, proprietary interface

»  Steady shrink in form factor from 24in to 17in


1970s developments

»  5.25 inch floppy disk form factor (microcode into mainframe)

»  Emergence of industry standard disk interfaces


1980s: PCs, first generation workstations, and client server computing

»  Centralized storage on file server


•  Accelerate disk downsizing: 8inch inch to 5.25 inch

»  Mass market disk drives become a reality


•  Industry standards: SCSI, IDI; end of proprietary standards

•  5.25 inch to 3.5 inch drives PCs


1990s: Laptops à 2.5inch


2000s: Switch to perpendicular (vs longitudinal) recording

»  2007: 1TB

»  2009: 2TB

»  2016: 10TB




Recent: Seagate Enterprise


10 TB (Jan, 2016)

7 platters, 14 heads

7200 RPMs

6 Gbps SATA /12Gbps SAS interface

220MB/s transfer rate, cache size: 256MB 

Helium filled: reduce friction and power usage




HDD vs SSD Comparison


SSD prices drop much faster than HDD




Largest SSDs

60TB (Seagate, August 16)

Dual 16Gbps 

Seq reads: 1.5GB/s


Seq writes: 1GB/s

Random Read Ops (IOPS): 150K




File Systems Background

i-node: per-file metadata "
(unique per file)

»  contains: ownership, permissions, "

timestamps, ~10 data-block pointers

»  i-nodes form an array, indexed by "

“i-number” – so each i-node has a "
unique i-number


»  Array is explicit for FFS, implicit for "
LFS (its i-node map is cache of"
 i-nodes indexed by i-number)


Indirect blocks:

»  i-node only holds a small number of data block pointers (direct pointers)

»  For larger files, i-node points to an indirect block containing "

1024 4-byte entries in a 4K block

»  Each indirect block entry points to a data block

»  Can have multiple levels of indirect blocks for even larger files




Original Unix File System

Simple and elegant, but slow

» 20KB/s, only 2% from disk theoretical bandwidth (1MB/s)


Challenges:

» Blocks too small: 512 bytes (matched sector size)

» Many seeks


•  Consecutive blocks of files not close together

•  All i-nodes at the beginning of the disk, all data after that

•  i-nodes of directory not close together


» No read-ahead: transfer only one block at a time







Old File System

Increase block size to 1024: over 2x higher 
throughput (why?)

» 2x higher transfer rate

» Fewer indirect blocks, so fewer seeks


Challenges: in time free list becomes random so 
performance degrades (because of seeks)




FFS Changes

4096 or 8192 byte block size (why not larger?)

Use cylinder groups (why?)

» Each contains superblock, i-nodes, bitmap of free 

blocks, usage summary info


Blocks divided into small fragments (why?)


Don’t fill entire disk (why?) 






Parametrized Model

New file try to allocate new blocks on same 
cylinder (why?)

Don’t allocate consecutive blocks (why?)

» How do you compute the space between two 

blocks that are consecutive in the file?




Layout

Principles:

»  Locality of reference to minimize seek latency

»  Improve the layout of data to optimize larger transfers


inodes of files in same directory together (why?)


New directories in cylinder groups that have higher than average free 
blocks (why?)


Try to store all data blocks of a file in the same cylinder group

»  Preferably at rotationally optimal positions in the same cylinder


Move to other cylinder group when files grow (which one?) "
Greedy algorithm: 

»  same cylinder

»  same cylinder group 

»  quadratically hash cylinder group number 

»  exhaustive search;




FFS Results

20-40% of disk bandwidth for large reads/writes

10-20x original UNIX speeds

Size: 3800 lines of code vs. 2700 in old system


10% of total disk space overhead

New system >200KB/s vs. 30KB/s old system

» Free list contains sequential blocks in new system vs. 

randomly ordered blocks in old




FFS System Interface Enhancements

Long file names: from 14 to 255 characters 


Advisory file locks (shared exclusive):

» Requested by the program: shared or exclusive

»  Effective only if all programms accessing the same file use them

»  Process id of holder stored with lock => can reclaim the lock if process 

is no longer around


Long file names: from 14 to 255 characters


Symbolic links (contrast to hard links)


Atomic rename capability

»  The only atomic read-modify-write operation, before this there was none


Disk quotas




FFS Summary

3 key features:

» Optimize FS implementation for hardware

» Measurement-driven design decisions

» Locality “wins”


Limitations: 

» Measurements derived from a single installation

» Ignored technology trends


Lessons: 

» Don’t ignore underlying hardware characteristics

» Contrasting research approaches: improve what you’ve got 

vs. design something new (e.g., Log File Systems)






Log-Structured/Journaling File System

Radically different file system design


Technology motivations:

» CPUs outpacing disks: I/O becoming more-and-more a bottleneck

» Large RAM: file caches work well, making most disk traffic writes


Problems with (then) existing file systems:

» Lots of little writes

» Synchronous: wait for disk in too many places

» 5 seeks to create a new file: (rough order) 


1.  file i-node (create)

2.  file data

3.  directory entry

4.  file i-node (finalize)

5.  directory i-node (modification time)




LFS Basic Idea

Log all data and metadata with large, sequential 
writes


Keep an index on log’s contents


Use large memory to provide fast access through 
caching


Data layout on disk has “temporal locality” (good for 
writing), rather than “logical locality” (good for reading)

» Why is this a good idea? 




Two Potential Problems

Log retrieval on cache misses


Wrap-around: what happens when running out 
of space?

» No longer any big, empty runs available

» How to prevent fragmentation?




Log Retrieval

When you create a small file (less than a block):

» Write data block to memory log

» Write file inode to memory log

» Write directory block to memory log

» Write directory inode to memory log


When memory accumulates to say 1MB or 30s 
have elapsed, write log to disk as a single write


No seek for writes, but inodes are now floating!




Solving floating inode problem

Need to keep track of current position of inodes

» Solution: use an “inode-map”!


inode-map could be large (as many entries as 
there are files in the file system)

» Break inode-map into chunks and cache them


Write out on the log those chunks that have 
changed

But, how do do you find the chunks of inode-
map?




Finding chunks of inode-map?

Solution inode-map-map: map of inode map

Have we solved the problem now?

Yes! 

» inode-map-map is small enough to be always cached 

in memory

» it is small enough to be written to a fixed (and small 

position) on the disk (checkpoint region)

» write the inode-map-map when file system is 

unmounted




LFS Disk Wrap-Around

Compact live info to open up large runs of free space

»  Problem: long-lived information gets copied over-and-over


Thread log through free spaces

»  Problem: disk fragments, causing I/O to become inefficient again


Solution: segmented log

» Divide disk into large, fixed-size segments

» Do compaction within a segment; thread between segments

» When writing, use only clean segments (i.e. no live data)

» Occasionally clean segments: read in several, write out live data in 

compacted form, leaving some fragments free

» Collect long-lived info into segments that never need to be cleaned

» No free list or bit map (as in FFS), only a list of clean segments




Which segment to clean?

Keep estimate of free space in each segment to 
help find segments with lowest utilization

Always start by looking for segment with 
utilization=0…

If utilization of segments being cleaned is U:

» write cost = (bytes read & written)/(new bytes written) "

                = 2/(1 – U), if U > 0

» write cost increases with U: U = .9 => cost = 20!

» need a cost <= 4; à U <= .5




LFS Segment Cleaning

How to clean a segment?

» Segment summary block contains map of the segment

» Must list every i-node and file block

» For file blocks you need {i-number, block #}




Analysis and Evolution of 
Journaling File Systems


Write-ahead logging: commit data by writing it to log, 
synchronously and sequentially

Later move data to its normal (FFS-like) location

» called checkpointing; makes room in the (circular) journal


Better for random writes, slightly worse for big sequential 
writes

All reads go the the fixed location blocks, not the journal 

» Journal only read for crash recovery and checkpointing


Much better than FFS (fsck) for crash recovery (Why?)

Ext3/ReiserFS/Ext4 filesystems are the main ones in Linux




Three modes for a JFS

Writeback mode

Ordered mode

Data journaling mode




Writeback Mode

Journal only metadata

Write back data and metadata independently

Metadata may have dangling references after 
a crash (if crash between metadata and data 
writes)




Ordered Mode

Journal only metadata, but always write data 
blocks before their referring metadata is 
journaled


This mode generally makes the most sense 
and is used by Windows NTFS and IBM’s JFS




Writer Journaling Mode

Write both data and metadata to the journal 

Huge increase in journal traffic; plus have to 
write most blocks twice, once to the journal 
and once for checkpointing (why not all?)




JFS Crash Recovery

Load superblock to find tail/head of the log


Scan log to detect whole committed transactions

» There is a commit record


Replay log entries to bring in-memory data 
structures up to date

» This is called “redo logging” and entries must be 

“idempotent”


Playback is oldest to newest; tail of the log is the 
place where checkpointing stopped




Semantic Block-level Analysis (SBA)

Nice idea: interpose special disk driver between the file system 
and real disk driver


Pros: 

»  captures ALL disk traffic 

»  can use with a black-box file system (no source code needed and can 

even use via VMWare for another OS)

» more insightful than just performance benchmark


Cons: 

» Must understand disk layout

» Really only useful for writes


To use well, drive file system with smart applications that test 
certain features of the file system (to make the inference easier)




Semantic Trace Playback (STP)

Uses two kinds of interposition:

» SBA driver that produces a trace, and 

» user-level library between app and real file system


User-level library traces dirty blocks and app 
calls to fsync


Playback:

» Given the two traces, STP generates a timed set of 

commands to the raw disk device – this sequence can 
be timed to understand performance implications




Semantic Trace Playback (STP)

Claim: 

» Faster to modify the trace than to modify the file 

system and simpler and less error-prone than building 
a simulator


Limited to simple FS changes


Best example usage: 

» Showing that dynamically switching between ordered 

mode and data journaling mode actually gets the best 
overall performance (use data journaling for random 
writes)




LFS Summary

CPUs outpacing disk speeds; implies that I/O is becoming 
more-and-more of a bottleneck


Write FS information to a log and treat the log as the truth; 
rely on in-memory caching for speed


Hard problem: finding/creating long runs of disk space to 
(sequentially) write log records to

»  Solution: clean live data from segments, picking segments to 

clean based on a cost/benefit function


Limitations:

»  Assumes that files get written in their entirety; else would get intra-

file fragmentation in LFS

»  If small files “get bigger” then how would LFS compare to UNIX?




LFS Observations

Interesting point: 

» LFS’ efficiency isn’t derived from knowing the 

details of disk geometry; implies it can survive 
changing disk technologies (such variable number 
of sectors/track) better


Lessons: 

» Rethink your basic assumptions about what’s 

primary and what’s secondary in a design

» In this case, they made the log become the truth 

instead of just a recovery aid




Exercise

How would you design differently file-system 
for SSDs or 3DXPoint?



