Mesos and Borg
(Lecture 17, cs262a)

lon Stoica,
UC Berkeley
October 24, 2016



Today’s Papers

Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center,

Benjamin Hindman, Andy Konwinski, Matei Zaharia,
Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, lon Stoica, NSDI'11

( )

Large-scale cluster management at Google with Borg,

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, John Wilkes, EuroSys’15

(static.googleusercontent.com/media/research.google.com/en//pubs/archive/
43438.pdf)



Motivation

e Rapid innovation in cloud computing

Cassandra - ONP I

pre%,t @&_

e Today
e No single framework optimal for all applications

e Each framework runs on its dedicated cluster or cluster
partition



Computation Model: Frameworks
e A framework (e.g., Hadoop, MPIl) manages one or
more jobs in a computer cluster
e A job consists of one or more tasks

e A task (e.g., map, reduce) is implemented by one or
more processes running on a single machine

'Executor | _ _ _ _ Executor | _ _ _ _
task 1 | < N :tasks 1, 2, 3, 4
S Job 2:tasks 5, 6, 7
. Framework

; T = == -~ - 4l Scheduler (e.g.,

Executor =
€ -~~~ |Executor|,l| Job Tracker)
— (g task 3 | ST
e Taskk | T




One Framework Per Cluster Challenges

. . 50%
e |nefficient resource usage

E.g., Hadoop cannot use available
resources from Pregel’ s cluster

25%

0%

No opportunity for stat. multiplexing_;;;;;g s >0%
Pregel 25%

e Hard to share data 0%

Copy or access remotely, expensive

e Hard to cooperate Hatbop
E.g., Not easy for Pregel to use @
graphs generated by Hadoop Pregel

Need to run multiple frameworks on same cluster




What do we want?

e Common resource sharing layer
e Abstracts (“virtualizes”) resources to frameworks
e Enable diverse frameworks to share cluster
e Make it easier to develop and deploy new frameworks (e.g., Spark)

Hadoop -

Resource
Management System

L:\‘I | 4 \\:\] V4 | 4 \\\\‘ a4 \\\\: |

~/ ~ N T~

Uniprograming Multiprograming



Fine Grained Resource Sharing

e Task granularity both in time & space

Multiplex node/time between tasks belonging to different
jobs/frameworks

e Tasks typically short; median ~= 10 sec, minutes

e Why fine grained?
Improve data locality
Easier to handle node failures



Goals

Efficient utilization of resources
Support diverse frameworks (existing & future)
Scalability to 10,000’ s of nodes

Reliability in face of node failures



Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—> Global

Scheduler
* Response time
* Throughput
e Availability




Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements >
Job execution plan—>

e Task DAG

Global
Scheduler

* |nputs/outputs

10



Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—— >
Job execution plan—>

Estimates —>

 Task durations
* |nput sizes
* Transfer sizes

Global
Scheduler




Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—— >
Job execution plan—>

Estimates ——>

Global
Scheduler

j}Task schedule

e Advantages: can achieve optimal schedule

e Disadvantages:

Complexity = hard to scale and ensure resilience

Hard to anticipate future frameworks’ requirements

Need to refactor existing frameworks

12



Mesos



Resource Offers

Unit of allocation: resource offer
Vector of available resources on a node
E.g., nodel: <1CPU, 1GB>, node2: <4CPU, 16GB>

e Master sends resource offers to frameworks

e Frameworks select which offers to accept and which
tasks to run

Push task scheduling to frameworks

14



Mesos Architecture: Example

\_

Slaves continuously
send status updates
about resources

\/_)

rsist acr task
/\pessacossass)

Framework executors
launch tasks and may

icq ter
Chyy
Slave S2 &, ‘ 2Gg.
task 2 N S(Szfvscp >,
3 U
52:<8CPU,1GGB>J(task. VGCpU’4G8_\
’ GGBA}
Slave S3 o
6090} /
e Pluggable scheduler to

pick framework to

_ send an offer to D

.

Framework scheduler
selects resources and
provides tasks

=




Why does it Work?

e A framework can just wait for an offer that matches
its constraints or preferences!

e Reject offers it does not like

-
Accept: both S2

y . i ] _ and S3 store the
e Example: Hadoop s job inputis blue file  blue file

16




Two Key Questions

e How long does a framework need to wait?

e How do you allocate resources of different types?

E.g., if framework A has (1CPU, 3GB) tasks, and framework
B has (2CPU, 1GB) tasks, how much we should allocate to A
and B?

17



Two Key Questions

» How long does a framework need to wait?

e How do you allocate resources of different types?

18



How Long to Wait?

e Depend on
Distribution of task duration
“Pickiness” — set of resources satisfying framework constraints

e Hard constraints: cannot run if resources violate
constraints

Software and hardware configurations (e.g., OS type and version,
CPU type, public IP address)

Special hardware capabilities (e.g., GPU)
e Soft constraints: can run, but with degraded performance
Data, computation locality

19



Model

One job per framework
One task per node
No task preemption

Pickiness, p = k/n
k — number of nodes required by job, e.g., it’s target allocation

n —number of nodes satisfying framework’s constraints in the
cluster



Ramp-Up Time

e Ramp-Up Time: time job waits to get its target allocation

e Example:
e Job’starget allocation, k=3
e Number of nodes job can pick from, n =5

sal | I
S
2 I
st ;
' ' ’ » time
job ready famp-up time on:Iends



Pickiness: Ramp-Up Time

Estimated ramp-up time of a job with pickiness p
is = (100p)-th percentile of task duration distribution

e E.g.,if p=0.9, estimated ramp-up time is the 90-th
percentile of task duration distribution (7)

e Why? Assume: k=3, n=235, p=ik/n

S5 ../ + job needs to wait for first k (= p xn) tasks to finish
S4 ﬁ  Ramp-up time: £-th order statistics of task
S3 duration dist. sample, i.e., (100p)th perc. of dist.
s2 [ I
st

: : » time

job ready Famp-up time 22



Alternate Interpretations

e If p =1, estimated time of a job getting fraction g of its
allocation is = (100g)-th percentile of T

E.g., estimate time of a job getting 0.9 of its allocation is the 90-
th percentile of T

e If utilization of resources satisfying job’ s constraints is ¢,
estimated time to get its allocation is = (100g)-th perc. of
T

E.g., if resource utilization is 0.9, estimated time of a job to get its
allocation is the 90-th percentile of T’

23



Ramp-up Time (7,,,,, %)

Ramp-Up Time: Mean

e Impact of heterogeneity of task duration distribution

8

7

6

5 ==Unif.

. p<0.86 > —EXp.
p<05-> ramp-up <27, .. —Pareto (a=1.1)

3 ramp-up< T, . : —Pareto (a=1.5)

2 ==Pareto (a=1.9)

1

O TTTTTTTTT T T T T I I T T I T T T I I T T T I T I T T I T T T T I T T T T I T T I T I T T I T T T T I T T T T I T T T T I T T I T I T T T I T T T I T TITT PiCkynESS(p)

o O+ OV V4O AV d O dWOdOdo d0
QO dd ANANMmMMmIT I nn© VMM~ D
O OO OO O OO OO0 OO0 OO0 O O O O O O



Ramp-up Time: Traces

HO0R000 S Facebook (Oct’ 10) 10000000 - MS Bing (’ 10)
100000 |, ¢t a=1.944 1000000 - ‘oo a=1.887
9 L ean = 168s £ 100000 - T ean = 189s
@ 10000 - 3
- 10000 -
o 1000 - 0
3 é 1000 -
5 100 - 5 w0
10 - 10 -
1 m T T . ‘ 1 T | ' ]
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000

Task Duration (s) Task Duration (s)

shape parameter, a = 1.9

Ramp-up formula p=0.9 | p=0.98

mean (u) (a-1) y .. 057, ... 068T 3.717 .,
a (l_p)l/a

stdev (o) “.|_p» 0017,, 004T,,., 1.377,,,,
a \n(-p)




Improving Ramp-Up Time?

Preemption: preempt tasks

Migration: move tasks around to increase choice, e.g.,

constraint set = {m1, m2, m3, ma4} [Ltask] [Ntaskn] wait!

Job 2 constraint set = {m1, m2}

task task

Oy Oy O
m1l m?2 m3 m4

Existing frameworks implement
e No migration: expensive to migrate short tasks

e Preemption with task killing (e.g., Dryad’ s Quincy): expensive
to checkpoint data-intensive tasks

26



Macro-benchmark

e Simulate an 1000-node cluster
Job and task durations: Facebook traces (Oct 2010)
Constraints: modeled after Google*

e Allocation policy: fair sharing

e Scheduler comparison

Resource Offers: no preemption, and no migration (e.g.,
Hadoop’ s Fair Scheduler + constraints)

Global-M: global scheduler with migration
Global-MP: global scheduler with migration and preemption

*Sharma et al., “Modeling and Synthesizing Task Placement Constraints in Google Compute Clusters”, ACM SoCC, 2011.



Facebook: Job Completion Times

1

0.8 /

—

/

0.6 /

0.4

CDF

0.2

1 10 100

Job Duration (s)

— res. offers —Global-M

1000

—Global-MP

10000



Facebook: Pickiness

e Average cluster utilization: 82%
Much higher than at Facebook, which is < 50%

e Mean pickiness: 0.11

100% 3
90%
80%
gg:ﬁ’ 90th perc. > p=0.4

(0]
50%
40%
30% 50t perc. 2 p=0.014
20%
10%

0%

CDF (% of jobs)

0 0.2 04 0.6 0.8 1
Pickiness



Summary: Resource Offers

e Ramp-up time low under most scenarios

e Barely any performance differences between global
and distributed schedulers in Facebook workload

e Optimizations

Master doesn’ t send an offer already rejected by a
framework (negative caching)

Allow frameworks to specify white and black lists of nodes

30



Borg



Borg

Cluster management system at Google that achieves

high utilization by:

Admission control
Efficient task-packing
Over-commitment

Machine sharing

32



The User Perspective

Users: Google developers and system administrators

mainly

The workload: Production and batch, mainly
Cells, around 10K nodes

Jobs and tasks

33



The User Perspective

e Allocs

Reserved set of resources
e Priority, Quota, and Admission Control

Job has a priority (preempting)

Quota is used to decide which jobs to admit for scheduling
e Naming and Monitoring

50.jfoo.ubar.cc.borg.google.com

Monitoring health of the task and thousands of
performance metrics

34



Scheduling a Job

job hello world = {

runtime = { cell = “ic” } //what cell should run it in?
binary = ‘../hello world webserver’ //what program to run?
args = { port = ‘Sports’ }

requirements = {

RAM = 100M
disk = 100M
CPU = 0.1

}
replicas = 10000

35



Borg Architecture

config
file ‘ : g
borgcfg ] [::;)(:\smand-lme ]] [web browsers ]]
e Borgmaster
. Cell = ———
e Main Borgmaster process & Borghaster | 220U
shard
SC h e d u I er persistent store
scheduler [f—> (Paxos)
e Five rep|icaS link shard

e Borglet T~

L L L A AN L

£ —Z— | NG

o Manage and monitor tasks and iBorgIet | |Borg|et | IBor:;Iet | iBorgIet |

resource -
D }
:] U 4 E g

U%

e Borgmaster polls Borglet every
few seconds

36



Borg Architecture

config
fle S ][,:;(?(;Lmand-line]] [,web browsers]]
e Fauxmaster: high-fidelity \ f /
Borgmaster simulator o BQM\‘;’ ‘;;;d,ﬁ
e Simulate previous runs from cheder Jr—» ;’;;jg;e)"s*h;‘r’?e
checkpoints inksherd |||}
e Contains full Borg code /\\

L y4 y4 pa\ N L
£ N P N

e Used for debugging, capacity =HliEHlIETlmD

planning, evaluate new B U — }
. : | Ol
policies and algorithms ) ==

U%

37



Scalability

config
e borgelg ][%;;{‘sma"d'”“e]] [,web browsers]]

e Separate scheduler ~_ | 7~
e Separate threads to poll the p— ‘é::ﬁf

Borglets sreclr [f—| (et
e Partition functions across the S |

five replicas =1 // \\\ ¥
e Score caching Eﬁ ope g"’" e
e Equivalence classes DED ) :] U SD } E

e Relaxed randomization

38



Scheduling

config
il ; — ~
ke borgcfg ] [::;)(:\smand-hne ]] [web browsers ]]
o feasibility checking: find ~_ | 7
: . : Cell ==
machines for a given job pw—
shard
e Scoring: pick one machines scheduler Jp—s| [ peristntsr
e User prefs & build-in criteria Inkeherd | ||
Minimize the number and priority of ) y ,/ \A\\ )
the preempted tasks | == = DS
C . iBorgIet | |Borg|et IH{il Borglet | iBorgIet
Picking machines that already havea | [ O
copy of the task’s packages [:]D :] U . } wmili
% /'E /I |V

spreading tasks across power and
failure domains

Packing by mixing high and low
priority tasks

39



Scheduling

config
file S ]['fg(:?smand-nne]]['web browsers]]
e Feasibility checking: find ~_ | /
machines for a given job o BQM\]" |
e Scoring: pick one machines e J}—> ;’:;Sx‘g;j"s‘hs‘r’l
e User prefs & build-in criteria inkshard | |
e E-PVM (Enhanced-Parallel Virtua p /, /\\\ ¥
Machine) vs best-fit el el il
Hybrid approach %D :]U :]C] } il
Y Y0 e

40



Borg’s Allocation Algorithms and Policies

Advanced Bin-Packing algorithms:

e Avoid stranding of resources

Evaluation metric: Cell-compaction

e Find smallest cell that we can pack the workload into...

e Remove machines randomly from a cell to maintain cell
heterogeneity

Evaluated various policies to understand the cost, in terms
of extra machines needed for packing the same workload

41



Should we Share Clusters...

e ... between production and non-production jobs?

100

(00
o

®
o

N
o

Percentage of cells

N
o

0 . . . . .
-10 0 10 20 30 40 50 60
Overhead from segregation [%)]

42



Should we use Smaller Cells?

100
P 801 .
©
(&)
S 60 1
()]
(@)]
©
o 40f 1
o
5
o0t ~ 2subcells A
— 5 subcells
0 g . 10 subcells
-50 0 50 100 150 200 250

Overhead from partitioning [%]

43



Would fixed resource bucket
sizes be better?

100
»w 80
X
)]
S
S 60
)
O) )
s :
c 40 - :
3 B
3 §
5 % non-prod CPU
20 prod MEeMmOry ====s==== —
non-prod memory
lmemoryl-to-CPU-lratlo lIllllIIIlIl

0.01 0.1 1 10 100 1000
Requested limit [cores, GiB, GiB/core]

44



Kubernetes

Google open source project loosely inspired by Borg

Directly derived Improved

e Borglet => Kubelet e Job =>labels

e alloc=>pod e managed ports => IP per
e Borg containers => docker pod

e Declarative specifications e Monolithic master =>

micro-services

45



