
Mesos	and	Borg	
(Lecture	17,	cs262a)		

Ion Stoica,
UC Berkeley

October 24, 2016

Today’s Papers
Mesos:	A	Pla+orm	for	Fine-Grained	Resource	Sharing	in	the	Data	
Center,		
Benjamin	Hindman,	Andy	Konwinski,	Matei	Zaharia,	
Ali	Ghodsi,	Anthony	D.	Joseph,	Randy	Katz,	ScoK	Shenker,	Ion	Stoica,	NSDI’11		
(hKps://people.eecs.berkeley.edu/~alig/papers/mesos.pdf)	

Large-scale	cluster	management	at	Google	with	Borg,		
Abhishek	Verma,	Luis	Pedrosa,	Madhukar	R.	Korupolu,	David	Oppenheimer,	
Eric	Tune,	John	Wilkes,	EuroSys’15		
(sta]c.googleusercontent.com/media/research.google.com/en//pubs/archive/
43438.pdf)

Mo7va7on	
l  Rapid	innova]on	in	cloud	compu]ng	

	
	
l  Today	

l  No	single	framework	op]mal	for	all	applica]ons	
l  Each	framework	runs	on	its	dedicated	cluster	or	cluster	

par]]on		

Dryad

Pregel

CassandraHypertable

Computa7on	Model:	Frameworks	
l  A	framework	(e.g.,	Hadoop,	MPI)	manages	one	or	
more	jobs	in	a	computer	cluster	

l  A	job	consists	of	one	or	more	tasks	
l  A	task	(e.g.,	map,	reduce)	is	implemented	by	one	or	
more	processes	running	on	a	single	machine	

	

4

cluster	

Framework	
Scheduler	(e.g.,	
Job	Tracker)	

	

Executor	
(e.g.,	Task		
Tracker)	

Executor	
(e.g.,	Task	
Traker)	

Executor	
(e.g.,	Task	
Tracker)	

Executor		
(e.g.,	Task	
Tracker)	

task	1	
task	5	

task	3	
task	7	 task	4	

task	2	
task	6	

Job	1:	tasks	1,	2,	3,	4	
Job	2:	tasks	5,	6,	7	

One	Framework	Per	Cluster	Challenges	
l  Inefficient	resource	usage	

l  E.g.,	Hadoop	cannot	use	available	
resources	from	Pregel’s	cluster	

l  No	opportunity	for	stat.	mul]plexing	

l  Hard	to	share	data	
l  Copy	or	access	remotely,	expensive	

l  Hard	to	cooperate	
l  E.g.,	Not	easy	for	Pregel	to	use	

graphs	generated	by	Hadoop	

		
5

Hadoop	

Pregel	

0%#

25%#

50%#

0%#

25%#

50%#

Hadoop	

Pregel	

2011	slide	Need	to	run	mul]ple	frameworks	on	same	cluster	

What	do	we	want?	

l  Common	resource	sharing	layer		
l  Abstracts	(“virtualizes”)	resources	to	frameworks	
l  Enable	diverse	frameworks	to	share	cluster	
l  Make	it	easier	to	develop	and	deploy	new	frameworks	(e.g.,	Spark)	

6

MPI	Hadoop	
MPI	Hadoop	

Resource		
Management	System	

Uniprograming	 Mul7programing	

Fine	Grained	Resource	Sharing	

l  Task	granularity	both	in	7me	&	space	
l  Mul]plex	node/]me	between	tasks	belonging	to	different	

jobs/frameworks		

l  Tasks	typically	short;	median	~=	10	sec,	minutes	

l  Why	fine	grained?	
l  Improve	data	locality	
l  Easier	to	handle	node	failures	

7

Goals	

l  Efficient	u7liza7on	of	resources	

l  Support	diverse	frameworks	(exis]ng	&	future)	

l  Scalability	to	10,000’s	of	nodes	

l  Reliability	in	face	of	node	failures	

Approach:	Global	Scheduler	

9

Global		
Scheduler	

Organiza]on	policies	
Resource	availability	

•  Response]me	
•  Throughput	
•  Availability	
•  …	

Job	requirements	

Approach:	Global	Scheduler	

10

Global		
Scheduler	

Organiza]on	policies	
Resource	availability	

•  Task	DAG	
•  Inputs/outputs	

Job	requirements	
Job	execu]on	plan	

Approach:	Global	Scheduler	

11

Global		
Scheduler	

Organiza]on	policies	
Resource	availability	

•  Task	dura]ons	
•  Input	sizes	
•  Transfer	sizes	

Job	requirements	
Job	execu]on	plan	

Es]mates	

Approach:	Global	Scheduler	

l  Advantages:	can	achieve	op]mal	schedule	
l  Disadvantages:		

l  Complexity	à	hard	to	scale	and	ensure	resilience	
l  Hard	to	an]cipate	future	frameworks’	requirements			
l  Need	to	refactor	exis]ng	frameworks			

12

Global		
Scheduler	

Organiza]on	policies	
Resource	availability	

Task	schedule	Job	requirements	
Job	execu]on	plan	

Es]mates	

Mesos	

Resource	Offers	

l  Unit	of	alloca]on:	resource	offer		
l  Vector	of	available	resources	on	a	node	
l  	E.g.,		node1:	<1CPU,	1GB>,	node2:	<4CPU,	16GB>		

l  Master	sends	resource	offers	to	frameworks	

l  Frameworks	select	which	offers	to	accept	and	which	
tasks	to	run	

14

Push	task	scheduling	to	frameworks	

Hadoop	
	JobTracker	

MPI	
	JobTracker	

8CPU,	8GB	

Hadoop	
Executor	MPI	executor	

task	1	

task	1	

8CPU,	16GB	

16CPU,	16GB	

Hadoop	
Executor	

task	2	

Alloca]on	
Module	

S1	 <8CPU,8GB>	
S2	 <8CPU,16GB>	
S3	 <16CPU,16GB>	

S1	 <6CPU,4GB>	
S2	 <4CPU,12GB>	
S1	 <2CPU,2GB>	

Mesos	Architecture:	Example	

15

(S1:<8C
PU,	8GB

>,	

	S2:<8C
PU,	16G

B>)	S2:<8CPU,16GB>	

Slaves	con]nuously	
send	status	updates	
about	resources	

Pluggable	scheduler	to	
pick	framework	to		
send	an	offer	to	

Framework	scheduler	
selects	resources	and	

provides	tasks	

Framework	executors	
launch	tasks	and	may	
persist	across	tasks	

task	2:<4CPU,4GB>	

Slave	S1	

Slave	S2	

Slave	S3	

Mesos	Master	

Why	does	it	Work?	
l  A	framework	can	just	wait	for	an	offer	that	matches	
its	constraints	or	preferences!	
l  Reject	offers	it	does	not	like	

l  Example:	Hadoop’s	job	input	is	blue	file	

16

S1	

S2	

S3	

Reject:	S1	doesn’t	
store	blue	file	

Accept:	both	S2	
and	S3	store	the	
blue	file	

Hadoop		
(Job	tracker)	

Mesos	
master	(S2:<…>

,S3:<…>
)	

(task1:[
S2:<…>

];	

	task2:[
S3:<..>]

)	

task1:<…>		

S1:<…>
	

Two	Key	Ques7ons	

l  How	long	does	a	framework	need	to	wait?	

l  How	do	you	allocate	resources	of	different	types?	
l  E.g.,	if	framework	A	has	(1CPU,	3GB)	tasks,	and	framework	

B	has	(2CPU,	1GB)	tasks,	how	much	we	should	allocate	to	A	
and	B?	

17

Two	Key	Ques7ons	

Ø  How	long	does	a	framework	need	to	wait?	

l  How	do	you	allocate	resources	of	different	types?	

18

How	Long	to	Wait?	
l  Depend	on	

l  Distribu]on	of	task	dura]on	
l  “Pickiness”	–	set	of	resources	sa]sfying	framework	constraints	

l  Hard	constraints:	cannot	run	if	resources	violate	
constraints	
l  Sovware	and	hardware	configura]ons	(e.g.,	OS	type	and	version,	

CPU	type,	public	IP	address)		
l  Special	hardware	capabili]es	(e.g.,	GPU)	

l  So]	constraints:	can	run,	but	with	degraded	performance		
l  Data,	computa]on	locality	

	

19

Model	

l  One	job	per	framework	
l  One	task	per	node	
l  No	task	preemp]on	

l  Pickiness,	p = k/n
l  k	–	number	of	nodes	required	by	job,	e.g.,	it’s	target	alloca]on	
l  n	–	number	of	nodes	sa]sfying	framework’s	constraints	in	the	

cluster	

S5	
S4	
S3	

S2	
S1	

]me	

Ramp-Up	Time	

l  Ramp-Up	Time:]me	job	waits	to	get	its	target	alloca]on	
l  Example:	

l  Job’s	target	alloca]on,	k	=	3		
l  Number	of	nodes	job	can	pick	from,	n =	5	

job	ready	 job	ends	ramp-up	7me	

Pickiness:	Ramp-Up	Time	

Es]mated	ramp-up]me	of	a	job	with	pickiness	p		
is	≅	(100p)-th	percen7le	of	task	dura]on	distribu]on	

l  E.g.,	if	p	=	0.9,	es]mated	ramp-up]me	is	the	90-th	
percen]le	of	task	dura]on	distribu]on	(T)	

l  Why?	Assume:	k = 3, n = 5, p = k/n		

S5	
S4	
S3	

S2	
S1	

]me	
job	ready	 ramp-up	7me	

•  job	needs	to	wait	for	first	k	(= p×n)	tasks	to	finish	
•  Ramp-up	7me:	k-th	order	sta]s]cs	of	task		
					dura]on	dist.	sample,	i.e.,	(100p)th	perc.	of	dist.

22

Alternate	Interpreta7ons	

23

l  If	p	=	1,	es]mated]me	of	a	job	gexng	frac]on	q	of	its	
alloca]on	is	≅	(100q)-th	percen]le	of	T
l  E.g.,	es]mate]me	of	a	job	gexng	0.9	of	its	alloca]on	is	the	90-

th	percen]le	of	T

l  If	u]liza]on	of	resources	sa]sfying	job’s	constraints	is	q,	
es]mated]me	to	get	its	alloca]on	is	≅	(100q)-th	perc.	of	
T
l  E.g.,	if	resource	u]liza]on	is	0.9,	es]mated]me	of	a	job	to	get	its	

alloca]on	is	the	90-th	percen]le	of	T

Ramp-Up	Time:	Mean	
l  Impact	of	heterogeneity	of	task	dura]on	distribu]on		

Ra
m
p-
up

	T
im

e	
(T

m
ea

n×
)	

Pickyness	(p)	0	

1	

2	

3	

4	

5	

6	

7	

8	

0.
01
	

0.
06
	

0.
11
	

0.
16
	

0.
21
	

0.
26
	

0.
31
	

0.
36
	

0.
41
	

0.
46
	

0.
51
	

0.
56
	

0.
61
	

0.
66
	

0.
71
	

0.
76
	

0.
81
	

0.
86
	

0.
91
	

0.
96
	

Unif.	

Exp.	

0	

1	

2	

3	

4	

5	

6	

7	

8	

0.
01
	

0.
06
	

0.
11
	

0.
16
	

0.
21
	

0.
26
	

0.
31
	

0.
36
	

0.
41
	

0.
46
	

0.
51
	

0.
56
	

0.
61
	

0.
66
	

0.
71
	

0.
76
	

0.
81
	

0.
86
	

0.
91
	

0.
96
	

Unif.	

Exp.	

Pareto	(a=1.1)	

Pareto	(a=1.5)	

Pareto	(a=1.9)	

Pickyness	(p)	

p	≤	0.86	à	
ramp-up	≤	2Tmean p	≤	0.5	à		

ramp-up	≤	Tmean

Ramp-up	Time:	Traces	

Ramp-up	 formula	 p =0.1	 p =0.5	 p =0.9	 p =0.98	
mean	(µ)	 0.5	Tmean 0.68	Tmean	 1.59	Tmean	 3.71Tmean	

stdev	(σ)	 0.01	Tmean	 0.04	Tmean	 0.25	Tmean	 1.37Tmean	

(a−1)
a

×
Tmean
(1− p)1/a

µ
a
×

p
n(1− p)

Facebook	(Oct’10)			
a	=	1.944	
Tmean	=	168s		

MS	Bing	(’10)			
a	=	1.887	
Tmean	=	189s		

shape	parameter,		a = 1.9

l  Preemp7on:	preempt	tasks	
		

l  Migra7on:	move	tasks	around	to	increase	choice,	e.g.,	

l  Exis]ng	frameworks	implement	
l  No	migra]on:	expensive	to	migrate	short	tasks		
l  Preemp]on	with	task	killing	(e.g.,	Dryad’s	Quincy):	expensive	

to	checkpoint	data-intensive	tasks	

Job	1	constraint	set	=	{m1,	m2,	m3,	m4}	
Job	2	constraint	set	=	{m1,	m2}	

m1	 m2	 m3	 m4	

Improving	Ramp-Up	Time?	

26

wait!	

task	 task	

task		 task	

Macro-benchmark	
l  Simulate	an	1000-node	cluster	

l  Job	and	task	dura]ons:	Facebook	traces	(Oct	2010)	
l  Constraints:	modeled	aver	Google*	

l  Alloca]on	policy:	fair	sharing		
	

l  Scheduler	comparison	
l  Resource	Offers:	no	preemp]on,	and	no	migra]on	(e.g.,	

Hadoop’s	Fair	Scheduler	+	constraints)	
l  Global-M:	global	scheduler	with	migra]on	
l  Global-MP:	global	scheduler	with	migra]on	and	preemp]on	

*Sharma	et	al.,	“Modeling	and	Synthesizing	Task	Placement	Constraints	in	Google	Compute	Clusters”,	ACM	SoCC,	2011.		

Facebook:	Job	Comple7on	Times	

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

C
D

F

Job Duration (s)

Choosy Global-M Global-MP res.	offers	

Facebook:	Pickiness	
l  Average	cluster	u]liza]on:	82%	

l  Much	higher	than	at	Facebook,	which	is	<	50%	

l  Mean	pickiness:	0.11	

29

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 0.2 0.4 0.6 0.8 1 1.2

C
D

F
(%

 o
f j

ob
s)

Pickiness

50th	perc.	à	p = 0.014	

90th	perc.	à	p = 0.4	

Summary:	Resource	Offers	

l  Ramp-up]me	low	under	most	scenarios	

l  Barely	any	performance	differences	between	global	
and	distributed	schedulers	in	Facebook	workload	

l  Op]miza]ons	
l  Master	doesn’t	send	an	offer	already	rejected	by	a	

framework	(nega]ve	caching)	
l  Allow	frameworks	to	specify	white	and	black	lists	of	nodes	
	
		

30

Borg	

Borg	

Cluster	management	system	at	Google	that	achieves	
high	u]liza]on	by:	
l  Admission	control	
l  Efficient	task-packing	
l  Over-commitment	
l  Machine	sharing	

32

The	User	Perspec7ve	

l  Users:	Google	developers	and	system	administrators	
mainly	

l  The	workload:	Produc]on	and	batch,	mainly	
l  Cells,	around	10K	nodes	
l  Jobs	and	tasks	

33

The	User	Perspec7ve	

l  Allocs	
l  Reserved	set	of	resources	

l  Priority,	Quota,	and	Admission	Control		
l  Job	has	a	priority	(preemp]ng)	
l  Quota	is	used	to	decide	which	jobs	to	admit	for	scheduling	

l  Naming	and	Monitoring	
l  50.jfoo.ubar.cc.borg.google.com		
l  Monitoring	health	of	the	task	and	thousands	of	

performance	metrics	

34

Scheduling	a	Job	

35

job hello_world = {
 runtime = { cell = “ic” } //what cell should run it in?
 binary = ‘../hello_world_webserver’ //what program to run?
 args = { port = ‘%port%’ }
 requirements = {
 RAM = 100M
 disk = 100M
 CPU = 0.1
 }
 replicas = 10000
}

Borg	Architecture	

l  Borgmaster	
l  Main	Borgmaster	process	&	

Scheduler		
l  Five	replicas		

l  Borglet	
l  Manage	and	monitor	tasks	and	

resource		
l  Borgmaster	polls	Borglet	every	

few	seconds		

36

Borg	Architecture	

l  Fauxmaster:	high-fidelity	
Borgmaster	simulator	
l  Simulate	previous	runs	from	

checkpoints	
l  Contains	full	Borg	code	

l  Used	for	debugging,	capacity	
planning,	evaluate	new	
policies	and	algorithms	

37

Scalability	

l  Separate	scheduler	
l  Separate	threads	to	poll	the	
Borglets		

l  Par]]on	func]ons	across	the	
five	replicas	

l  Score	caching		
l  Equivalence	classes		
l  Relaxed	randomiza]on		

38

Scheduling	

l  feasibility	checking:	find	
machines	for	a	given	job	

l  Scoring:	pick	one	machines	
l  User	prefs	&	build-in	criteria	

l  Minimize	the	number	and	priority	of	
the	preempted	tasks	

l  Picking	machines	that	already	have	a	
copy	of	the	task’s	packages	

l  spreading	tasks	across	power	and	
failure	domains	

l  Packing	by	mixing	high	and	low	
priority	tasks	

39

Scheduling	

l  Feasibility	checking:	find	
machines	for	a	given	job	

l  Scoring:	pick	one	machines	
l  User	prefs	&	build-in	criteria	
l  E-PVM	(Enhanced-Parallel	Virtuall	

Machine)	vs	best-fit	
l  Hybrid	approach	

40

Borg’s	Alloca7on	Algorithms	and	Policies	

Advanced	Bin-Packing	algorithms:	
l  Avoid	stranding	of	resources	
Evalua]on	metric:	Cell-compac]on	
l  Find	smallest	cell	that	we	can	pack	the	workload	into…	
l  Remove	machines	randomly	from	a	cell	to	maintain	cell	
heterogeneity	

Evaluated	various	policies	to	understand	the	cost,	in	terms	
of	extra	machines	needed	for	packing	the	same	workload	

41

Should	we	Share	Clusters…	
l  …	between	produc]on	and	non-produc]on	jobs?	

42

Should	we	use	Smaller	Cells?	

43

Would	fixed	resource	bucket	
sizes	be	beKer?	

44

Kubernetes	

Directly	derived	

l  Borglet	=>	Kubelet	
l  alloc	=>	pod	
l  Borg	containers	=>	docker	
l  Declara]ve	specifica]ons	

Improved	

l  Job	=>	labels	
l  managed	ports	=>	IP	per	

pod	
l  Monolithic	master	=>	

micro-services	

45

Google	open	source	project	loosely	inspired	by	Borg				

