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Mo7va7on	
l  Rapid	innova]on	in	cloud	compu]ng	

	
	
l  Today	

l  No	single	framework	op]mal	for	all	applica]ons	
l  Each	framework	runs	on	its	dedicated	cluster	or	cluster	

par]]on		

Dryad

Pregel

CassandraHypertable



Computa7on	Model:	Frameworks	
l  A	framework	(e.g.,	Hadoop,	MPI)	manages	one	or	
more	jobs	in	a	computer	cluster	

l  A	job	consists	of	one	or	more	tasks	
l  A	task	(e.g.,	map,	reduce)	is	implemented	by	one	or	
more	processes	running	on	a	single	machine	

	

4 

cluster	

Framework	
Scheduler	(e.g.,	
Job	Tracker)	

	

Executor	
(e.g.,	Task		
Tracker)	

Executor	
(e.g.,	Task	
Traker)	

Executor	
(e.g.,	Task	
Tracker)	

Executor		
(e.g.,	Task	
Tracker)	

task	1	
task	5	

task	3	
task	7	 task	4	

task	2	
task	6	
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Job	2:	tasks	5,	6,	7	



One	Framework	Per	Cluster	Challenges	
l  Inefficient	resource	usage	

l  E.g.,	Hadoop	cannot	use	available	
resources	from	Pregel’s	cluster	

l  No	opportunity	for	stat.	mul]plexing	

l  Hard	to	share	data	
l  Copy	or	access	remotely,	expensive	

l  Hard	to	cooperate	
l  E.g.,	Not	easy	for	Pregel	to	use	

graphs	generated	by	Hadoop	
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2011	slide	Need	to	run	mul]ple	frameworks	on	same	cluster	



What	do	we	want?	

l  Common	resource	sharing	layer		
l  Abstracts	(“virtualizes”)	resources	to	frameworks	
l  Enable	diverse	frameworks	to	share	cluster	
l  Make	it	easier	to	develop	and	deploy	new	frameworks	(e.g.,	Spark)	
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Fine	Grained	Resource	Sharing	

l  Task	granularity	both	in	7me	&	space	
l  Mul]plex	node/]me	between	tasks	belonging	to	different	

jobs/frameworks		

l  Tasks	typically	short;	median	~=	10	sec,	minutes	

l  Why	fine	grained?	
l  Improve	data	locality	
l  Easier	to	handle	node	failures	
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Goals	

l  Efficient	u7liza7on	of	resources	

l  Support	diverse	frameworks	(exis]ng	&	future)	

l  Scalability	to	10,000’s	of	nodes	

l  Reliability	in	face	of	node	failures	



Approach:	Global	Scheduler	

9 

Global		
Scheduler	
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Approach:	Global	Scheduler	
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Global		
Scheduler	

Organiza]on	policies	
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Job	requirements	
Job	execu]on	plan	



Approach:	Global	Scheduler	

11 

Global		
Scheduler	
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Resource	availability	

•  Task	dura]ons	
•  Input	sizes	
•  Transfer	sizes	

Job	requirements	
Job	execu]on	plan	

Es]mates	



Approach:	Global	Scheduler	

l  Advantages:	can	achieve	op]mal	schedule	
l  Disadvantages:		

l  Complexity	à	hard	to	scale	and	ensure	resilience	
l  Hard	to	an]cipate	future	frameworks’	requirements			
l  Need	to	refactor	exis]ng	frameworks			
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Global		
Scheduler	

Organiza]on	policies	
Resource	availability	

Task	schedule	Job	requirements	
Job	execu]on	plan	

Es]mates	



Mesos	



Resource	Offers	

l  Unit	of	alloca]on:	resource	offer		
l  Vector	of	available	resources	on	a	node	
l  	E.g.,		node1:	<1CPU,	1GB>,	node2:	<4CPU,	16GB>		

l  Master	sends	resource	offers	to	frameworks	

l  Frameworks	select	which	offers	to	accept	and	which	
tasks	to	run	

14 

Push	task	scheduling	to	frameworks	



Hadoop	
	JobTracker	

MPI	
	JobTracker	

8CPU,	8GB	

Hadoop	
Executor	MPI	executor	

task	1	

task	1	

8CPU,	16GB	

16CPU,	16GB	

Hadoop	
Executor	

task	2	

Alloca]on	
Module	

S1	 <8CPU,8GB>	
S2	 <8CPU,16GB>	
S3	 <16CPU,16GB>	

S1	 <6CPU,4GB>	
S2	 <4CPU,12GB>	
S1	 <2CPU,2GB>	

Mesos	Architecture:	Example	
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task	2:<4CPU,4GB>	
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Slave	S2	

Slave	S3	

Mesos	Master	



Why	does	it	Work?	
l  A	framework	can	just	wait	for	an	offer	that	matches	
its	constraints	or	preferences!	
l  Reject	offers	it	does	not	like	

l  Example:	Hadoop’s	job	input	is	blue	file	
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S1	
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Reject:	S1	doesn’t	
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Hadoop		
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Mesos	
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,S3:<…>
)	

(task1:[
S2:<…>

];	

	task2:[
S3:<..>]

)	

task1:<…>		

S1:<…>
	



Two	Key	Ques7ons	

l  How	long	does	a	framework	need	to	wait?	

l  How	do	you	allocate	resources	of	different	types?	
l  E.g.,	if	framework	A	has	(1CPU,	3GB)	tasks,	and	framework	

B	has	(2CPU,	1GB)	tasks,	how	much	we	should	allocate	to	A	
and	B?	
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Two	Key	Ques7ons	

Ø  How	long	does	a	framework	need	to	wait?	

l  How	do	you	allocate	resources	of	different	types?	
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How	Long	to	Wait?	
l  Depend	on	

l  Distribu]on	of	task	dura]on	
l  “Pickiness”	–	set	of	resources	sa]sfying	framework	constraints	

l  Hard	constraints:	cannot	run	if	resources	violate	
constraints	
l  Sovware	and	hardware	configura]ons	(e.g.,	OS	type	and	version,	

CPU	type,	public	IP	address)		
l  Special	hardware	capabili]es	(e.g.,	GPU)	

l  So]	constraints:	can	run,	but	with	degraded	performance		
l  Data,	computa]on	locality	
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Model	

l  One	job	per	framework	
l  One	task	per	node	
l  No	task	preemp]on	

l  Pickiness,	p = k/n 
l  k	–	number	of	nodes	required	by	job,	e.g.,	it’s	target	alloca]on	
l  n	–	number	of	nodes	sa]sfying	framework’s	constraints	in	the	

cluster	



S5	
S4	
S3	

S2	
S1	

]me	

Ramp-Up	Time	

l  Ramp-Up	Time:	]me	job	waits	to	get	its	target	alloca]on	
l  Example:	

l  Job’s	target	alloca]on,	k	=	3		
l  Number	of	nodes	job	can	pick	from,	n =	5	

job	ready	 job	ends	ramp-up	7me	



Pickiness:	Ramp-Up	Time	

Es]mated	ramp-up	]me	of	a	job	with	pickiness	p		
is	≅	(100p)-th	percen7le	of	task	dura]on	distribu]on	

l  E.g.,	if	p	=	0.9,	es]mated	ramp-up	]me	is	the	90-th	
percen]le	of	task	dura]on	distribu]on	(T)	

l  Why?	Assume:	k = 3, n = 5, p = k/n		

S5	
S4	
S3	

S2	
S1	

]me	
job	ready	 ramp-up	7me	

•  job	needs	to	wait	for	first	k	(= p×n)	tasks	to	finish	
•  Ramp-up	7me:	k-th	order	sta]s]cs	of	task		
					dura]on	dist.	sample,	i.e.,	(100p)th	perc.	of	dist. 
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Alternate	Interpreta7ons	
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l  If	p	=	1,	es]mated	]me	of	a	job	gexng	frac]on	q	of	its	
alloca]on	is	≅	(100q)-th	percen]le	of	T 
l  E.g.,	es]mate	]me	of	a	job	gexng	0.9	of	its	alloca]on	is	the	90-

th	percen]le	of	T 

l  If	u]liza]on	of	resources	sa]sfying	job’s	constraints	is	q,	
es]mated	]me	to	get	its	alloca]on	is	≅	(100q)-th	perc.	of	
T 
l  E.g.,	if	resource	u]liza]on	is	0.9,	es]mated	]me	of	a	job	to	get	its	

alloca]on	is	the	90-th	percen]le	of	T 



Ramp-Up	Time:	Mean	
l  Impact	of	heterogeneity	of	task	dura]on	distribu]on		
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Ramp-up	Time:	Traces	

Ramp-up	 formula	 p =0.1	 p =0.5	 p =0.9	 p =0.98	
mean	(µ)	 0.5	Tmean 0.68	Tmean	 1.59	Tmean	 3.71Tmean	

stdev	(σ)	 0.01	Tmean	 0.04	Tmean	 0.25	Tmean	 1.37Tmean	

(a−1)
a

×
Tmean
(1− p)1/a

µ
a
×

p
n(1− p)

Facebook	(Oct’10)			
a	=	1.944	
Tmean	=	168s		

MS	Bing	(’10)			
a	=	1.887	
Tmean	=	189s		

shape	parameter,		a = 1.9 



l  Preemp7on:	preempt	tasks	
		

l  Migra7on:	move	tasks	around	to	increase	choice,	e.g.,	

l  Exis]ng	frameworks	implement	
l  No	migra]on:	expensive	to	migrate	short	tasks		
l  Preemp]on	with	task	killing	(e.g.,	Dryad’s	Quincy):	expensive	

to	checkpoint	data-intensive	tasks	

Job	1	constraint	set	=	{m1,	m2,	m3,	m4}	
Job	2	constraint	set	=	{m1,	m2}	

m1	 m2	 m3	 m4	

Improving	Ramp-Up	Time?	
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Macro-benchmark	
l  Simulate	an	1000-node	cluster	

l  Job	and	task	dura]ons:	Facebook	traces	(Oct	2010)	
l  Constraints:	modeled	aver	Google*	

l  Alloca]on	policy:	fair	sharing		
	

l  Scheduler	comparison	
l  Resource	Offers:	no	preemp]on,	and	no	migra]on	(e.g.,	

Hadoop’s	Fair	Scheduler	+	constraints)	
l  Global-M:	global	scheduler	with	migra]on	
l  Global-MP:	global	scheduler	with	migra]on	and	preemp]on	

*Sharma	et	al.,	“Modeling	and	Synthesizing	Task	Placement	Constraints	in	Google	Compute	Clusters”,	ACM	SoCC,	2011.		



Facebook:	Job	Comple7on	Times	
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Facebook:	Pickiness	
l  Average	cluster	u]liza]on:	82%	

l  Much	higher	than	at	Facebook,	which	is	<	50%	

l  Mean	pickiness:	0.11	
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Summary:	Resource	Offers	

l  Ramp-up	]me	low	under	most	scenarios	

l  Barely	any	performance	differences	between	global	
and	distributed	schedulers	in	Facebook	workload	

l  Op]miza]ons	
l  Master	doesn’t	send	an	offer	already	rejected	by	a	

framework	(nega]ve	caching)	
l  Allow	frameworks	to	specify	white	and	black	lists	of	nodes	
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Borg	



Borg	

Cluster	management	system	at	Google	that	achieves	
high	u]liza]on	by:	
l  Admission	control	
l  Efficient	task-packing	
l  Over-commitment	
l  Machine	sharing	
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The	User	Perspec7ve	

l  Users:	Google	developers	and	system	administrators	
mainly	

l  The	workload:	Produc]on	and	batch,	mainly	
l  Cells,	around	10K	nodes	
l  Jobs	and	tasks	
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The	User	Perspec7ve	

l  Allocs	
l  Reserved	set	of	resources	

l  Priority,	Quota,	and	Admission	Control		
l  Job	has	a	priority	(preemp]ng)	
l  Quota	is	used	to	decide	which	jobs	to	admit	for	scheduling	

l  Naming	and	Monitoring	
l  50.jfoo.ubar.cc.borg.google.com		
l  Monitoring	health	of	the	task	and	thousands	of	

performance	metrics	
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Scheduling	a	Job	
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job hello_world = { 
  runtime = { cell = “ic” } //what cell should run it in? 
  binary = ‘../hello_world_webserver’ //what program to run? 
  args = { port = ‘%port%’ } 
  requirements = { 
    RAM = 100M 
    disk = 100M 
    CPU = 0.1 
  } 
  replicas = 10000 
} 



Borg	Architecture	

l  Borgmaster	
l  Main	Borgmaster	process	&	

Scheduler		
l  Five	replicas		

l  Borglet	
l  Manage	and	monitor	tasks	and	

resource		
l  Borgmaster	polls	Borglet	every	

few	seconds		
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Borg	Architecture	

l  Fauxmaster:	high-fidelity	
Borgmaster	simulator	
l  Simulate	previous	runs	from	

checkpoints	
l  Contains	full	Borg	code	

l  Used	for	debugging,	capacity	
planning,	evaluate	new	
policies	and	algorithms	
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Scalability	

l  Separate	scheduler	
l  Separate	threads	to	poll	the	
Borglets		

l  Par]]on	func]ons	across	the	
five	replicas	

l  Score	caching		
l  Equivalence	classes		
l  Relaxed	randomiza]on		

38 



Scheduling	

l  feasibility	checking:	find	
machines	for	a	given	job	

l  Scoring:	pick	one	machines	
l  User	prefs	&	build-in	criteria	

l  Minimize	the	number	and	priority	of	
the	preempted	tasks	

l  Picking	machines	that	already	have	a	
copy	of	the	task’s	packages	

l  spreading	tasks	across	power	and	
failure	domains	

l  Packing	by	mixing	high	and	low	
priority	tasks	

39 



Scheduling	

l  Feasibility	checking:	find	
machines	for	a	given	job	

l  Scoring:	pick	one	machines	
l  User	prefs	&	build-in	criteria	
l  E-PVM	(Enhanced-Parallel	Virtuall	

Machine)	vs	best-fit	
l  Hybrid	approach	
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Borg’s	Alloca7on	Algorithms	and	Policies	

Advanced	Bin-Packing	algorithms:	
l  Avoid	stranding	of	resources	
Evalua]on	metric:	Cell-compac]on	
l  Find	smallest	cell	that	we	can	pack	the	workload	into…	
l  Remove	machines	randomly	from	a	cell	to	maintain	cell	
heterogeneity	

Evaluated	various	policies	to	understand	the	cost,	in	terms	
of	extra	machines	needed	for	packing	the	same	workload	
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Should	we	Share	Clusters…	
l  …	between	produc]on	and	non-produc]on	jobs?	
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Should	we	use	Smaller	Cells?	
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Would	fixed	resource	bucket	
sizes	be	beKer?	
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Kubernetes	

Directly	derived	

l  Borglet	=>	Kubelet	
l  alloc	=>	pod	
l  Borg	containers	=>	docker	
l  Declara]ve	specifica]ons	

Improved	

l  Job	=>	labels	
l  managed	ports	=>	IP	per	

pod	
l  Monolithic	master	=>	

micro-services	
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Google	open	source	project	loosely	inspired	by	Borg				


