
Erlang and Go
(CS262a, Berkeley Fall 2016)

Philipp Moritz

The Problem

Distributed computation is hard!

● State
○ Hard to do recovery, dependency on order of execution

● Concurrency and Synchronization
○ Hard to reason about, deadlocks

● Fault handling
○ Error origin and handling in different parts of the system

● Complexity of coupled components
○ Makes it hard to develop software in large teams

This lecture is about languages/tools that
make it easier to write distributed programs

Erlang

● Developed at Ericson as a proprietary

language to improve development of

telephony applications

● High availability of nine “9”s (30 ms

downtime per year)

● 1986: initial version in Prolog

● 1992: BEAM (High performance VM)

● since 1998: Open source

named after Agner Krarup
Erlang, mathematician and
inventor of queuing theory

Erlang: Requirements

● Designed for telecommunication systems

● Hard requirements:
○ High degree of concurrency

○ Distributed

○ Soft real-time capabilities

○ 100% availability

● Soft requirements:
○ Hot swapping code

Erlang: Philosophy

Requirements

● 100% availability

Decision

Erlang: Philosophy

Requirements

● 100% availability

Decision

● strong fault recovery

○ hierarchy of tasks for recovery

○ isolation between tasks

○ dynamic code upgrade

Erlang: Philosophy

Requirements

● 100% availability

● portability (e.g. to embedded

devices)

Decision

● strong fault recovery

○ hierarchy of tasks for recovery

○ isolation between tasks

○ dynamic code upgrade

Erlang: Philosophy

Requirements

● 100% availability

● portability (e.g. to embedded

devices)

Decision

● strong fault recovery

○ hierarchy of tasks for recovery

○ isolation between tasks

○ dynamic code upgrade

● agnostic to OS

○ green processes

○ doesn’t use OS services

Erlang: Philosophy

Requirements

● 100% availability

● portability (e.g. to embedded

devices)

● high concurrency

○ soft real-time

Decision

● strong fault recovery

○ hierarchy of tasks for recovery

○ isolation between tasks

○ dynamic code upgrade

● agnostic to OS

○ green processes

○ doesn’t use OS services

Erlang: Philosophy

Requirements

● 100% availability

● portability (e.g. to embedded

devices)

● high concurrency

○ soft real-time

Decision

● strong fault recovery

○ hierarchy of tasks for recovery

○ isolation between tasks

○ dynamic code upgrade

● agnostic to OS

○ green processes

○ doesn’t use OS services

● very lightweight processes,

communicate via channels

○ share nothing

○ asynchronous calls

Design Tradeoffs

Performance Security/Isolation
Erlang is a safe language (cf. SPIN)
● fast IPC (same address space)
● isolation via language semantics

Concurrency Maintainability

Decoupling components with “Share nothing”
semantics

Erlang: Error handling

● Crash early

● Let some other process do the error recovery

● Do not program defensively
○ If you cannot handle the error, don’t try to recover

Erlang: Concurrency

● Distributed actor

model (asynchronous

message passing)

● Exposed via spawning

processes and

asynchronous message

passing between them

% invoke web:start_server(Port, MaxConns)
 ServerProcess = spawn(web, start_server, [Port,
MaxConns]),

 % invoke web:start_server on machine RemoteNode
 RemoteProcess = spawn(RemoteNode, web, start_server,
[Port, MaxConns]),

 % Send a message to ServerProcess (asynchronously).
 ServerProcess ! {pause, 10},

 % Receive messages sent to this process
 receive
 a_message -> do_something;
 {data, DataContent} -> handle(DataContent);
 {hello, Text} -> io:format(...);
 {goodbye, Text} -> io:format(...)
 end.

Erlang: Example

Server client example

Erlang: Implementation

● Green processes (can launch millions of them)
○ mapped to OS threads

○ Support priorities

● Preemptive scheduler (every ~2000 function calls)
○ native C code needs to be instrumented to pass control to VM

○ IO threads to handle blocking IO

● robust and well tested
○ has been used in critical infrastructure by multiple companies

○ minimal dependence on OS

● https://github.com/erlang/otp

https://hamidreza-s.github.io/erlang/scheduling/real-time/preemptive/migration/20

16/02/09/erlang-scheduler-details.html

https://github.com/erlang/otp
https://github.com/erlang/otp
https://hamidreza-s.github.io/erlang/scheduling/real-time/preemptive/migration/2016/02/09/erlang-scheduler-details.html
https://hamidreza-s.github.io/erlang/scheduling/real-time/preemptive/migration/2016/02/09/erlang-scheduler-details.html
https://hamidreza-s.github.io/erlang/scheduling/real-time/preemptive/migration/2016/02/09/erlang-scheduler-details.html

Does Erlang achieve its goals?

Erlang: Impact

● Highly commercially successful in telecom

industry
○ Ericson

○ Nortel

○ T-Mobile

● WhatsApp

● Facebook chat (200 Mio users)

● Elixir

● RabbitMQ

Go: History

● Started as an experiment at

Google to design a language

that would solve challenges

that come up in large scale

software development

● First appeared 2009, first

stable release in 2011

Rob Pike, co-creator of Go

Go: Motivation

● Developing large software components with large team is hard
○ Slow builds

○ Dependencies and libraries

○ Complex languages, everybody uses a different subset

● Developing distributed software is even harder
○ Concurrency not natively supported by many existing languages

Influence from Plan 9

● Plan 9 from Bell Labs:
○ Everything is a file

○ Special C dialect:

■ No recursive #includes

■ Unicode

○ Distributed (byte oriented protocol 9P

to exchange data between nodes)

● Compiler infrastructure shared

Standardization and Tooling

● One way to do things (cf. Python)

● Standardized tooling:
○ go get: Package manager integrated with the language and github

○ go fmt: Put code into a standard format

○ go test: Unit testing and microbenchmarks

○ go vet: Static analysis and linting

○ go fix: Automatically update APIs and language constructs

● Statically linked binaries

Simplicity

● Few concepts that are orthogonal and composable:
○ Concurrency

■ Goroutines (execution)

■ Channels (communication)

■ Select (coordination)

○ Object oriented programming

■ Interfaces (contracts)

■ structs (data)

■ functions (code)

● No Templates/Generics (instead: interface {})

● No exceptions

● One type of loop

https://talks.golang.org/2015/simplicity-is-complicated.slide

https://talks.golang.org/2015/simplicity-is-complicated.slide
https://talks.golang.org/2015/simplicity-is-complicated.slide

Go Concurrency

● Goroutines are lightweight

threads that share the

same address space

● Communication happens over

channels

● More permissive than

Erlangs: Can pass pointers

over channels

func sum(s []int, c chan int) {

sum := 0

for _, v := range s {

sum += v

}

c <- sum // send sum to c

}

func main() {

s := []int{7, 2, 8, -9, 4, 0}

c := make(chan int)

go sum(s[:len(s)/2], c)

go sum(s[len(s)/2:], c)

x, y := <-c, <-c // receive from c

fmt.Println(x, y, x+y)

}

Go Interfaces

type rect struct {
 width, height float64
}

func (r rect) area() float64 {
 return r.width * r.height
}

func (r rect) perim() float64 {
 return 2*r.width + 2*r.height
}

type circle struct {
 radius float64
}

func (c circle) area() float64 {
 return math.Pi * c.radius * c.radius
}

func (c circle) perim() float64 {
 return 2 * math.Pi * c.radius
}

type geometry interface {
 area() float64
 perim() float64
}

● interface {}

● Reader implements Read

● Writer implements Write

● Stringer implements String

● Formatter implements Format

Go Interfaces

http://sweetohm.net/article/go-interfaces.en.html

There are lots of interfaces in the standard
library and in external libraries

http://sweetohm.net/article/go-interfaces.en.html
http://sweetohm.net/article/go-interfaces.en.html

Discussion: Does Go achieve its goals?

Go success stories

● Docker

● Kubernetes

● etcd

● Google: components of youtube.com and also dl.google.com

● Many companies are using it for distributed applications:
○ Uber

○ Dropbox

○ Netflix

